

Subject: Basic Electrical Engineering

Branch: Electrical Engineering

Subject code: 3110005

SH TECHNIC T

Semester: 1st

- 1. Which of the following is not an expression of power?
 - (a) P=VI
 - (b) $P=I^2R$
 - (c) $P=V^2/R$
 - (d) P=I/R

Answer: Option (**d**)

- 2. Which of the following is not an expression of power?
 - (a) P=VI
 - (b) $P=I^2R$
 - (c) $P=V^2/R$
 - (d) P=I/R

Answer: Option (**d**)

- 3. Which of the following is not an expression of power?
 - (a) P=VI
 - (b) $P=I^2R$
 - (c) $P=V^2/R$
 - (d) P=I/R

Answer:

- Option (d)
- 4. Which of the following is not an expression of power?

- (a) P=VI
- (b) $P=I^2R$
- (c) $P=V^2/R$
- (d) P=I/R

Answer: Option (**d**)

- 5. Kilowatt-hour (kWh) is a unit of?
 - (a) Current
 - (b) Power
 - (c) Energy
 - (d) Resistance

Answer:

Option (c)

- **6.** Kilowatt-hour (kWh) is a unit of?
 - (a) Current
 - (b) Power
 - (c) Energy
 - (d) Resistance

Answer: Option (c)

- 7. Kilowatt-hour (kWh) is a unit of?
 - (a) Current
 - (b) Power
 - (c) Energy
 - (d) Resistance

Answer:

Option (c)

- **8.** Kilowatt-hour (kWh) is a unit of?
 - (a) Current
 - (b) Power
 - (c) Energy

(d) Resistance

Answer: Option (c)

- 9. Out of the following, which is not a source of electrical energy?
 - (a) Solar cell
 - (b) Battery
 - (c) Potentiometer
 - (d) Genertor

Answer:

Option (c)

- 10. Out of the following, which is not a source of electrical energy?
 - (a) Solar cell
 - (b) Battery
 - (c) Potentiometer
 - (d) Genertor

Answer: Option (c)

- 11. Out of the following, which is not a source of electrical energy?
 - (a) Solar cell
 - (b) Battery
 - (c) Potentiometer
 - (d) Genertor

Answer:

Option (c)

- 12. Out of the following, which is not a source of electrical energy?
 - (a) Solar cell
 - (b) Battery
 - (c) Potentiometer

Dr. Subhash Technical Campus- The Jewel of Junagadh

(d) Genertor

Answer: Option (c)

- 13. Materials which easily allow the passage of electric current are known as _____
 - (a) Insulators
 - (b) Conductors
 - (c) Dielectrics
 - (d) Semi-conductors

Answer:

Option (b)

- 14. Materials which easily allow the passage of electric current are known as
 - (a) Insulators
 - (b) Conductors
 - (c) Dielectrics
 - (d) Semi-conductors

Answer: Option (b)

- 15. Materials which easily allow the passage of electric current are known as
 - (a) Insulators
 - (b) Conductors
 - (c) Dielectrics
 - (d) Semi-conductors

Answer:

Option (b)

- 16. Materials which easily allow the passage of electric current are known as _
 - (a) Insulators
 - (b) Conductors
 - (c) Dielectrics
 - (d) Semi-conductors

Answer:

Option (b)

- 17. Which of the following statements are true with regard to resistance?
 - (a) Resistance is directly proportional to a length of the wire
 - (b) Resistance is directly proportional to an area of cross-section of the wire
 - (c) Resistance is inversely proportional to the length of the wire
 - (d) Resistance is inversely proportional to the resistivity of the wire

Answer:

Option (a)

- 18. Which of the following statements are true with regard to resistance?
 - (a) Resistance is directly proportional to a length of the wire
 - (b) Resistance is directly proportional to an area of cross-section of the wire
 - (c) Resistance is inversely proportional to the length of the wire
 - (d) Resistance is inversely proportional to the resistivity of the wire

Answer: Option (a)

- **19.** Which of the following statements are true with regard to resistance?
 - (a) Resistance is directly proportional to a length of the wire
 - (b) Resistance is directly proportional to an area of cross-section of the wire
 - (c) Resistance is inversely proportional to the length of the wire
 - (d) Resistance is inversely proportional to the resistivity of the wire

Answer:

Option (a)

- 20. Which of the following statements are true with regard to resistance?
 - (a) Resistance is directly proportional to a length of the wire
 - (b) Resistance is directly proportional to an area of cross-section of the wire
 - (c) Resistance is inversely proportional to the length of the wire
 - (d) Resistance is inversely proportional to the resistivity of the wire

Answer: Option (a)

- 21. Resistivity of a wire depends on
 - (a) length
 - (b) material
 - (c) cross sectional area
 - (d) none of these

Answer:

Option (b)

- 22. Resistivity of a wire depends on
 - (a) length
 - (b) material
 - (c) cross sectional area
 - (d) none of these

Answer: Option (b)

23. Resistivity of a wire depends on

(a) length

- (b) material
- (c) cross sectional area
- (d) none of these

Answer:

Option (b)

- 24. Resistivity of a wire depends on
 - (a) length
 - (b) material
 - (c) cross sectional area
 - (d) none of these

Answer: Option (**b**)

- 25. A circuit contains two un-equal resistances in parallel
 - (a) current is same in both

- (b) large current flows in larger resistance
- (c) potential difference across each is same
- (d) smaller resistance has smaller conductance

Answer: Option (c)

- 26. A circuit contains two un-equal resistances in parallel
 - (a) current is same in both
 - (b) large current flows in larger resistance
 - (c) potential difference across each is same
 - (d) smaller resistance has smaller conductance

Answer: Option (c)

- 27. A circuit contains two un-equal resistances in parallel
 - (a) current is same in both
 - (b) large current flows in larger resistance
 - (c) potential difference across each is same
 - (d) smaller resistance has smaller conductance

Answer: Option (c)

- 28. A circuit contains two un-equal resistances in parallel
 - (a) current is same in both
 - (b) large current flows in larger resistance
 - (c) potential difference across each is same
 - (d) smaller resistance has smaller conductance

Answer:

Option (c)

- **29.** The resistance of a 100 W, 200 V lamp is
 - (a) 100 ohm
 - (b) 200 ohm
 - (c) 400 ohm
 - (d) 1600 ohm

Option (c)

- **30.** The resistance of a 100 W, 200 V lamp is
 - (a) 100 ohm
 - (b) 200 ohm
 - (c) 400 ohm
 - (d) 1600 ohm

Answer: Option (c)

31. The resistance of a 100 W, 200 V lamp is

- (a) 100 ohm
- (b) 200 ohm
- (c) 400 ohm
- (d) 1600 ohm

Answer: Option (c)

- 32. The resistance of a 100 W, 200 V lamp is
 - (a) 100 ohm
 - (b) 200 ohm
 - (c) 400 ohm
 - (d) 1600 ohm

Answer: Option (c)

- **33.** Ohm's law is not applicable to
 - (a) DC circuits
 - (b) high currents
 - (c) small resistors
 - (d) semi-conductors

Answer:

Option (**d**)

- **34.** Ohm's law is not applicable to
 - (a) DC circuits
 - (b) high currents
 - (c) small resistors
 - (d) semi-conductors

Answer: Option (**d**)

- 35. Ohm's law is not applicable to
 - (a) DC circuits
 - (b) high currents
 - (c) small resistors
 - (d) semi-conductors

Answer: Option (**d**)

36. Ohm's law is not applicable to

- (a) DC circuits
- (b) high currents
- (c) small resistors
- (d) semi-conductors

Answer:

Option (**d**)

- 37. A wire of resistance R has its length and cross section both doubled. Its resistance will become
 - (a) 4 R
 - (b) 2 R
 - (c) R
 - (d) R/4

Answer: Option (c)

38. A wire of resistance R has its length and cross section both doubled. Its resistance will become

Dr. Subhash Technical Campus- The Jewel of Junagadh

- (a) 4 R
- (b) 2 R
- (c) R
- (d) R/4

Answer: Option (c)

- **39.** A wire of resistance R has its length and cross section both doubled. Its resistance will become
 - (a) 4 R
 - (b) 2 R
 - (c) R
 - (d) R/4

Answer: Option (c)

40. A wire of resistance R has its length and cross section both doubled. Its resistance will become

- 41. Many resistors connected in series will?
 - (a) Divide the voltage proportionally among all the resistors
 - (b) Divide the current proportionally
 - (c) Increase the source voltage in proportion to the values of the resistors
 - (d) Reduce the power to zero

Answer: Option (a)

- 42. Many resistors connected in series will?
 - (a) Divide the voltage proportionally among all the resistors

- (b) Divide the current proportionally
- (c) Increase the source voltage in proportion to the values of the resistors
- (d) Reduce the power to zero

Answer: Option (a)

- 43. Many resistors connected in series will?
 - (a) Divide the voltage proportionally among all the resistors
 - (b) Divide the current proportionally
 - (c) Increase the source voltage in proportion to the values of the resistors
 - (d) Reduce the power to zero

Answer:

Option (a)

- 44. Many resistors connected in series will?
 - (a) Divide the voltage proportionally among all the resistors
 - (b) Divide the current proportionally
 - (c) Increase the source voltage in proportion to the values of the resistors
 - (d) Reduce the power to zero

Answer: Option (a)

- 45. It is preferable to connect bulbs in series or in parallel?
 - (a) Series
 - (b) Parallel
 - (c) Both series and parallel
 - (d) Neither series nor parallel

Answer:

Option (b)

- 46. It is preferable to connect bulbs in series or in parallel?
 - (a) Series
 - (b) Parallel
 - (c) Both series and parallel
 - (d) Neither series nor parallel

Dr. Subhash Technical Campus- The Jewel of Junagadh

Answer: Option (b)

47. It is preferable to connect bulbs in series or in parallel?

- (a) Series
- (b) Parallel
- (c) Both series and parallel
- (d) Neither series nor parallel

Answer: Option (b)

- **48.** It is preferable to connect bulbs in series or in parallel?
 - (a) Series
 - (b) Parallel
 - (c) Both series and parallel
 - (d) Neither series nor parallel

Answer:

Option (b)

- **49.** KCL is applied at
 - (a) Loop
 - (b) Node
 - (c) Both loop and node
 - (d) Neither loop nor node

Answer:

Option (b)

- **50.** KCL is applied at
 - (a) Loop
 - (b) Node
 - (c) Both loop and node
 - (d) Neither loop nor node

Answer: Option (b)

- **51.** KCL is applied at
 - (a) Loop
 - (b) Node
 - (c) Both loop and node
 - (d) Neither loop nor node

Answer:

- Option (**b**)
- 52. KCL is applied at
 - (a) Loop
 - (b) Node
 - (c) Both loop and node
 - (d) Neither loop nor node

Answer: Option (b)

53. Mesh analysis employs the method of

(a) KVL

- (b) KCL
- (c) Both KVL and KCL
- (d) Neither KCL nor KVL

Answer:

Option (a)

- 54. Mesh analysis employs the method of
 - (a) KVL
 - (b) KCL
 - (c) Both KVL and KCL
 - (d) Neither KCL nor KVL

Answer: Option (a)

55. Mesh analysis employs the method of _____

(a) KVL

- (b) KCL
- (c) Both KVL and KCL
- (d) Neither KCL nor KVL

Answer: Option (a)

- 56. Mesh analysis employs the method of _
 - (a) KVL
 - (b) KCL
 - (c) Both KVL and KCL
 - (d) Neither KCL nor KVL

Answer:

Option (a)

- **57.** For high frequencies, capacitor acts as
 - (a) Open circuit
 - (b) Short circuit
 - (c) Amplifier
 - (d) Rectifier

Answer: Option (b)

- 58. For high frequencies, capacitor acts as
 - (a) Open circuit
 - (b) Short circuit
 - (c) Amplifier
 - (d) Rectifier

Answer:

Option (b)

- **59.** For high frequencies, capacitor acts as
 - (a) Open circuit
 - (b) Short circuit
 - (c) Amplifier
 - (d) Rectifier

manner.

Answer:

Option (b)

- **60.** For high frequencies, capacitor acts as
 - (a) Open circuit
 - (b) Short circuit
 - (c) Amplifier
 - (d) Rectifier

Answer: Option (b)

- 61. Capacitors charge and discharge in _____
 - (a) Liner
 - (b) Constant
 - (c) Square
 - (d) Exponential

Answer:

Option (d)

- 62. Capacitors charge and discharge in _____ manner.
 - (a) Liner
 - (b) Constant
 - (c) Square
 - (d) Exponential

Answer:

Option (d)

- 63. Capacitors charge and discharge in _____ manner.
 - (a) Liner
 - (b) Constant
 - (c) Square
 - (d) Exponential

Answer: Option (**d**)

- 64. Capacitors charge and discharge in _____ manner.
 - (a) Liner
 - (b) Constant
 - (c) Square
 - (d) Exponential

Answer:

Option (**d**)

- 65. In superposition theorem, when we consider the effect of one voltage source, all the other voltage source
 - (a) Shorted
 - (b) Opened
 - (c) Removed
 - (d) Undisturbed

Answer: Option (a)

- 66. In superposition theorem, when we consider the effect of one voltage source, all the other voltage source
 - (a) Shorted
 - (b) Opened
 - (c) Removed
 - (d) Undisturbed

Answer:

Option (a)

- 67. In superposition theorem, when we consider the effect of one voltage source, all the other voltage source
 - (a) Shorted
 - (b) Opened
 - (c) Removed
 - (d) Undisturbed

Answer: Option (a)

68. In superposition theorem, when we consider the effect of one voltage source, all the other voltage source

(a) Shorted

- (b) Opened
- (c) Removed
- (d) Undisturbed

Answer: Option (a)

- **69.** Thevenin resistance is found by
 - (a) shorting all voltage sources
 - (b) opening all current sources
 - (c) shorting all voltage sources and opening all current sources
 - (d) opening all voltage sources and shorting all current sources

Answer: Option (c)

- **70.** Thevenin resistance is found by
 - (a) shorting all voltage sources
 - (b) opening all current sources
 - (c) shorting all voltage sources and opening all current sources
 - (d) opening all voltage sources and shorting all current sources

Answer: Option (c)

- 71. Thevenin resistance is found by
 - (a) shorting all voltage sources
 - (b) opening all current sources
 - (c) shorting all voltage sources and opening all current sources
 - (d) opening all voltage sources and shorting all current sources

Answer: Option (c)

- **72.** Thevenin resistance is found by
 - (a) shorting all voltage sources
 - (b) opening all current sources

- (c) shorting all voltage sources and opening all current sources
- (d) opening all voltage sources and shorting all current sources

Answer: Option (c)

- 73. Which of the following is also known as the dual of Thevenin's theorem?
 - (a) Norton's theorem
 - (b) Superposition theorem
 - (c) Maximum power transfer theorem
 - (d) Millman's theorem

Answer:

Option (a)

- 74. Which of the following is also known as the dual of Thevenin's theorem?
 - (a) Norton's theorem
 - (b) Superposition theorem
 - (c) Maximum power transfer theorem
 - (d) Millman's theorem

Answer:

Option (a)

- 75. Which of the following is also known as the dual of Thevenin's theorem?
 - (a) Norton's theorem
 - (b) Superposition theorem
 - (c) Maximum power transfer theorem
 - (d) Millman's theorem

Answer:

Option (a)

- 76. Which of the following is also known as the dual of Thevenin's theorem?
 - (a) Norton's theorem
 - (b) Superposition theorem
 - (c) Maximum power transfer theorem
 - (d) Millman's theorem

Answer: Option (a)

- 77. A 250 V bulb passes a current of 0.3 A. Calculate the power in the lamp.
 - (a) 75 W
 - (b) 50 W
 - (c) 25 W
 - (d) 90 W

Answer:

Option (a)

- 78. A 250 V bulb passes a current of 0.3 A. Calculate the power in the lamp.
 - (a) 75 W
 - (b) 50 W
 - (c) 25 W
 - (d) 90 W

Answer: Option (a)

- **79.** A 250 V bulb passes a current of 0.3 A. Calculate the power in the lamp.
 - (a) 75 W
 - (b) 50 W
 - (c) 25 W
 - (d) 90 W

Answer:

Option (a)

- **80.** A 250 V bulb passes a current of 0.3 A. Calculate the power in the lamp.
 - (a) 75 W
 - (b) 50 W
 - (c) 25 W
 - (d) 90 W

Answer: Option (a)

- **81.** Which of the following is not an expression of power?
 - (a) P = VI
 - (b) $P = I^2 R$
 - (c) $P = V^2/R$
 - (d) P = I/R

Answer: Option (d)

- 82. Which of the following is not an expression of power?
 - (a) P = VI
 - (b) $P = I^2 R$
 - (c) $P = V^2/R$
 - (d) P = I/R

Answer: Option (**d**)

- **83.** Which of the following is not an expression of power?
 - (a) P = VI
 - (b) $P = I^2 R$
 - (c) $P = V^2/R$
 - (d) P = I/R

Answer: Option (**d**)

- 84. Which of the following is not an expression of power?
 - (a) P = VI
 - (b) $\mathbf{P} = \mathbf{I}^2 \mathbf{R}$
 - (c) $P = V^2/R$
 - (d) P = I/R

Answer:

Option (**d**)

- **85.** A 250V bulb passes a current of 0.3A. Calculate the power in the lamp.
 - (a) 75 W
 - (b) 50 W
 - (c) 25 W
 - (d) 90 W

Answer:

Option (a)

- **86.** A 250V bulb passes a current of 0.3A. Calculate the power in the lamp.
 - (a) 75 W
 - (b) 50 W
 - (c) 25 W
 - (d) 90 W

Answer: Option (a)

87. A 250V bulb passes a current of 0.3A. Calculate the power in the lamp.

- (a) 75 W
- (b) 50 W
- (c) 25 W
- (d) 90 W

Answer: Option (a)

88.

A 250V bulb passes a current of 0.3A. Calculate the power in the lamp.

- (a) 75 W
- (b) 50 W
- (c) 25 W
- (d) 90 W

Answer:

Option (a)

- **89.** Kilowatt-hour(kWh) is a unit of?
 - (a) Current
 - (b) Power
 - (c) Energy
 - (d) Resistance

Answer:

Option (c)

- 90. Kilowatt-hour(kWh) is a unit of?
 - (a) Current
 - (b) Power
 - (c) Energy

(d) Resistance

Answer: Option (c)

- **91.** Kilowatt-hour(kWh) is a unit of?
 - (a) Current
 - (b) Power
 - (c) Energy
 - (d) Resistance

Answer:

Option (c)

- **92.** Kilowatt-hour(kWh) is a unit of?
 - (a) Current(b) Power
 - (c) Energy
 - (d) Resistance

Answer:

Option (c)

- **93.** The SI unit of power is? (a) kW (kilo-watt)
 - (b) J/s (joules per second)
 - (c) Ws (watt-second)
 - (d) J/h (joules per hour)

Answer:

Option (b)

- **94.** The SI unit of power is?
 - (a) kW (kilo-watt)
 - (b) J/s (joules per second)
 - (c) Ws (watt-second)
 - (d) J/h (joules per hour)

Answer: Option (b)

95. The SI unit of power is?

Faculty of Degree Engineering - 083

Department of Electrical Engineering -09

- (a) kW (kilo-watt)
- (b) J/s (joules per second)
- (c) Ws (watt-second)
- (d) J/h (joules per hour)

Answer: Option (b)

- **96.** The SI unit of power is?
 - (a) kW (kilo-watt)
 - (b) J/s (joules per second)
 - (c) Ws (watt-second)
 - (d) J/h (joules per hour)

Answer: Option (b)

- **97.** Out of the following, which one is not a source of electrical energy? (a) Solar cell

 - (b) Battery
 - (c) Potentiometer
 - (d) Generator

Answer: Option (c)

- 98. Out of the following, which one is not a source of electrical energy?
 - (a) Solar cell
 - (b) Battery
 - (c) Potentiometer
 - (d) Generator

Answer:

Option (c)

- 99. Out of the following, which one is not a source of electrical energy?
 - (a) Solar cell
 - (b) Battery
 - (c) Potentiometer
 - (d) Generator

Answer:

Option (c)

- 100. Out of the following, which one is not a source of electrical energy?
 - (a) Solar cell
 - (b) Battery
 - (c) Potentiometer
 - (d) Generator

Answer: Option (c)

101. Which among the following is an expression for energy?

- (a) V^2It
- (b) V^2Rt
- (c) V^2t/R
- (d) V^2t^2/R

Answer: Option (c)

102. Which among the following is an expression for energy?

- (a) V^2It
- (b) V^2Rt
- (c) V^2t/R
- (d) V^2t^2/R

Answer:

- Option (c)
- **103.** Which among the following is an expression for energy?
 - (a) V^2It
 - (b) V^2Rt
 - (c) V^2t/R
 - (d) V^2t^2/R

Answer: Option (c)

- **104.** Which among the following is an expression for energy?
 - (a) V^2It
 - (b) V^2Rt

- (c) V^2t/R
- (d) V^2t^2/R

Answer: Option (c)

- **105.** A battery converts_
 - (a) Electrical energy to chemical energy
 - (b) Chemical energy to electrical energy
 - (c) Mechanical energy to electrical energy
 - (d) Chemical energy to mechanical energy

Answer:

Option (b)

- 106. A battery converts_
 - (a) Electrical energy to chemical energy
 - (b) Chemical energy to electrical energy
 - (c) Mechanical energy to electrical energy
 - (d) Chemical energy to mechanical energy

Answer:

Option (b)

- 107. A battery converts_
 - (a) Electrical energy to chemical energy
 - (b) Chemical energy to electrical energy
 - (c) Mechanical energy to electrical energy
 - (d) Chemical energy to mechanical energy

Answer:

Option (b)

- **108.** A battery converts
 - (a) Electrical energy to chemical energy
 - (b) Chemical energy to electrical energy
 - (c) Mechanical energy to electrical energy
 - (d) Chemical energy to mechanical energy

Answer:

Option (b)

109. Materials which easily allow the passage of electric current are known as _____

Dr. Subhash Technical Campus- The Jewel of Junagadh

- (a) Insulators
- (b) Conductors
- (c) Dielectrics
- (d) Semi-conductors

Answer:

Option (b)

- **110.** Materials which easily allow the passage of electric current are known as _____
 - (a) Insulators
 - (b) Conductors
 - (c) Dielectrics
 - (d) Semi-conductors

Answer: Option (b)

- 111. Materials which easily allow the passage of electric current are known as
 - (a) Insulators
 - (b) Conductors
 - (c) Dielectrics
 - (d) Semi-conductors

Answer:

Option (b)

- 112. Materials which easily allow the passage of electric current are known as
 - (a) Insulators
 - (b) Conductors
 - (c) Dielectrics
 - (d) Semi-conductors

Answer:

Option (b)

- **113.** Which of the following statements are true with regard to resistance?
 - (a) Resistance is directly proportional to a length of the wire
 - (b) Resistance is directly proportional to an area of cross section of the wire
 - (c) Resistance is inversely proportional to the length of the wire
 - (d) Resistance is inversely proportional to the resistivity of the wire

Answer:

Dr. Subhash Technical Campus- The Jewel of Junagadh

Option (a)

- **114.** Which of the following statements are true with regard to resistance?
 - (a) Resistance is directly proportional to a length of the wire
 - (b) Resistance is directly proportional to an area of cross section of the wire
 - (c) Resistance is inversely proportional to the length of the wire
 - (d) Resistance is inversely proportional to the resistivity of the wire

Answer:

Option (a)

- 115. Which of the following statements are true with regard to resistance?
 - (a) Resistance is directly proportional to a length of the wire
 - (b) Resistance is directly proportional to an area of cross section of the wire
 - (c) Resistance is inversely proportional to the length of the wire
 - (d) Resistance is inversely proportional to the resistivity of the wire

Answer:

Option (**a**)

- **116.** Which of the following statements are true with regard to resistance?
 - (a) Resistance is directly proportional to a length of the wire
 - (b) Resistance is directly proportional to an area of cross section of the wire
 - (c) Resistance is inversely proportional to the length of the wire
 - (d) Resistance is inversely proportional to the resistivity of the wire

Answer: Option (a)

- **117.** Which, among the following is a unit for resistivity?
 - (a) ohm/metre
 - (b) ohm/metre²
 - (c) ohm-metre
 - (d) ohm-metre²

Answer: Option (c)

- **118.** Which, among the following is a unit for resistivity?
 - (a) ohm/metre
 - (b) ohm/metre²
 - (c) ohm-metre
 - (d) ohm-metre²

119. Which, among the following is a unit for resistivity?

- (a) ohm/metre
- (b) ohm/metre²
- (c) ohm-metre
- (d) ohm-metre²

Answer:

Option (c)

120. Which, among the following is a unit for resistivity?

- (a) ohm/metre
- (b) ohm/metre²
- (c) ohm-metre
- (d) ohm-metre²

Answer: Option (c)

- 121. Which of the following statements are true with regard to resistivity?
 - (a) Resistance depends on the temperature
 - (b) Resistance does not depend on the temperature
 - (c) Resistivity depend on the length
 - (d) Resistivity depend on area of cross section

Answer: Option (a)

- **122.** Which of the following statements are true with regard to resistivity?
 - (a) Resistance depends on the temperature
 - (b) Resistance does not depend on the temperature
 - (c) Resistivity depend on the length
 - (d) Resistivity depend on area of cross section

Answer:

Option (a)

- **123.** Which of the following statements are true with regard to resistivity?
 - (a) Resistance depends on the temperature

Faculty of Degree Engineering - 083

Department of Electrical Engineering -09

- (b) Resistance does not depend on the temperature
- (c) Resistivity depend on the length
- (d) Resistivity depend on area of cross section

Answer: Option (a)

- 124. Which of the following statements are true with regard to resistivity?
 - (a) Resistance depends on the temperature
 - (b) Resistance does not depend on the temperature
 - (c) Resistivity depend on the length
 - (d) Resistivity depend on area of cross section

Answer:

Option (a)

- **125.** The reciprocal of resistivity is_
 - (a) Conductance
 - (b) Resistance
 - (c) Conductivity
 - (d) Impedance

Answer: Option (c)

- **126.** The reciprocal of resistivity is
 - (a) Conductance
 - (b) Resistance
 - (c) Conductivity
 - (d) Impedance

Answer: Option (c)

- **127.** The reciprocal of resistivity is____
 - (a) Conductance
 - (b) Resistance
 - (c) Conductivity
 - (d) Impedance

Answer: Option (c)

- **128.** The reciprocal of resistivity is_____
 - (a) Conductance
 - (b) Resistance
 - (c) Conductivity
 - (d) Impedance

Answer:

Option (c)

- 129. Resistivity of a wire depends on
 - (a) length
 - (b) material
 - (c) cross section area
 - (d) none of the above

Answer: Option (b)

130. Resistivity of a wire depends on

- (a) length
- (b) material
- (c) cross section area
- (d) none of the above

Answer:

Option (b)

- 131. Resistivity of a wire depends on
 - (a) length
 - (b) material
 - (c) cross section area
 - (d) none of the above

Answer: Option (**b**)

- **132.** Resistivity of a wire depends on
 - (a) length
 - (b) material
 - (c) cross section area
 - (d) none of the above

Answer: Option (b)

- **133.** Which of the following is not the same as watt?
 - (a) joule/sec
 - (b) amperes/volt
 - (c) amperes x volts
 - (d) (amperes)² x ohm

Answer: Option (b)

134. Which of the following is not the same as watt?

- (a) joule/sec
- (b) amperes/volt
- (c) amperes x volts
- (d) (amperes)² x ohm

Answer: Option (b)

135. Which of the following is not the same as watt?

- (a) joule/sec
- (b) amperes/volt
- (c) amperes x volts
- (d) (amperes)² x ohm

Answer:

Option (b)

- **136.** Which of the following is not the same as watt?
 - (a) joule/sec
 - (b) amperes/volt
 - (c) amperes x volts
 - (d) (amperes)² x ohm

Answer:

Option (b)

- **137.** One kilowatt hour of electrical energy is the same as
 - (a) 36 x 10⁵ watts
 - (b) 36 x 10⁵ ergs
 - (c) 36×10^5 joules

(d) 36 x 10⁵ B.T.U.

Answer: Option (c)

SH TECHNIC

138. One kilowatt hour of electrical energy is the same as

- (a) 36 x 10⁵ watts
- (b) 36 x 10⁵ ergs
- (c) 36×10^5 joules
- (d) 36 x 10⁵ B.T.U.

Answer:

Option (c)

- 139. One kilowatt hour of electrical energy is the same as
 - (a) 36 x 10⁵ watts
 - (b) 36 x 10⁵ ergs
 - (c) 36 x 10⁵ joules
 - (d) 36 x 10⁵ B.T.U.

Answer:

Option (c)

140. One kilowatt hour of electrical energy is the same as

- (a) 36 x 10⁵ watts
- (b) 36 x 10⁵ ergs
- (c) 36 x 10⁵ joules
- (d) 36 x 10⁵ B.T.U.

Answer: Option (c)

Chapter 2. AC Circuits

- 1. The variation of a quantity such as voltage or current shown on a graph is known as
 - (a) Waveform
 - (b) Peak value
 - (c) Instantaneous value
 - (d) Period

Answer:

Option (a)

- 2. The variation of a quantity such as voltage or current shown on a graph is known as
 - (a) Waveform
 - (b) Peak value
 - (c) Instantaneous value
 - (d) Period

Answer: Option (a)

- 3. The variation of a quantity such as voltage or current shown on a graph is known as
 - (a) Waveform
 - (b) Peak value
 - (c) Instantaneous value
 - (d) Period

Answer:

Option (a)

- 4. The variation of a quantity such as voltage or current shown on a graph is known as
 - (a) Waveform
 - (b) Peak value
 - (c) Instantaneous value
 - (d) Period

Answer: Option (a)

Faculty of Degree Engineering - 083

Department of Electrical Engineering -09

- 5. What is the duration of one cycle known as
 - (a) Waveform
 - (b) Peak value
 - (c) Instantaneous value
 - (d) Period

Answer:

Option (d)

- 6. What is the duration of one cycle known as
 - (a) Waveform
 - (b) Peak value
 - (c) Instantaneous value
 - (d) Period

Answer: Option (**d**)

- 7. What is the duration of one cycle known as
 - (a) Waveform
 - (b) Peak value
 - (c) Instantaneous value
 - (d) Period

Answer:

Option (**d**)

- 8. What is the duration of one cycle known as
 - (a) Waveform
 - (b) Peak value
 - (c) Instantaneous value
 - (d) Period

Answer: Option (**d**)

- 9. The repetition of a variable quantity, recurring at equal intervals, is known as
 - (a) Waveform

- (b) Instantaneous value
- (c) Cycle
- (d) Period

Answer: Option (c)

- 10. The repetition of a variable quantity, recurring at equal intervals, is known as
 - (a) Waveform
 - (b) Instantaneous value
 - (c) Cycle
 - (d) Period

Answer: Option (c)

Option (C)

- 11. The repetition of a variable quantity, recurring at equal intervals, is known as
 - (a) Waveform
 - (b) Instantaneous value
 - (c) Cycle

(d) Period

Answer: Option (c)

- 12. The repetition of a variable quantity, recurring at equal intervals, is known as
 - (a) Waveform
 - (b) Instantaneous value
 - (c) Cycle
 - (d) Period

Answer: Option (c)

- 13. The value of a given waveform at any instant time os termed as
 - (a) Waveform
 - (b) Instantaneous value
 - (c) Cycle
 - (d) Period

Answer: Option (b)

14. The value of a given waveform at any instant time os termed as

- (a) Waveform
- (b) Instantaneous value
- (c) Cycle
- (d) Period

Answer: Option (b)

- 15. The value of a given waveform at any instant time os termed as
 - (a) Waveform
 - (b) Instantaneous value
 - (c) Cycle
 - (d) Period

Answer:

Option (b)

- 16. The value of a given waveform at any instant time os termed as
 - (a) Waveform
 - (b) Instantaneous value
 - (c) Cycle
 - (d) Period

Answer:

Option (b)

- 17. The maximum instantaneous value measured from zero value is known as
 - (a) Peak value
 - (b) Peak to Peak value
 - (c) Cycle
 - (d) Period

Answer: Option (a)

- The maximum instantaneous value measured from zero value is known as 18.
 - (a) Peak value
 - (b) Peak to Peak value
 - (c) Cycle
 - (d) Period

Answer: Option (a)

- 19. The maximum instantaneous value measured from zero value is known as
 - (a) Peak value
 - (b) Peak to Peak value
 - (c) Cycle
 - (d) Period

Answer: Option (a)

20.

The maximum instantaneous value measured from zero value is known as

- (a) Peak value
- (b) Peak to Peak value
- (c) Cycle
- (d) Period

Answer:

Option (a)

- RMS stands for 21.
 - (a) Root Mean Square
 - (b) Root Mean Sum
 - (c) Root Maximum Sum
 - (d) Root Minimum Sum

Answer:

- 22. RMS stands for
 - (a) Root Mean Square

Department of Electrical Engineering -09

- (b) Root Mean Sum
- (c) Root Maximum Sum
- (d) Root Minimum Sum

Answer: Option (a)

- 23. RMS stands for
 - (a) Root Mean Square
 - (b) Root Mean Sum
 - (c) Root Maximum Sum
 - (d) Root Minimum Sum

Answer: Option (a)

- 24. RMS stands for
 - (a) Root Mean Square
 - (b) Root Mean Sum
 - (c) Root Maximum Sum
 - (d) Root Minimum Sum

Answer: Option (a)

25. In a sinusoidal wave, average current is always _____ rms current.

- (a) Greater than
- (b) Less than
- (c) Equal to
- (d) Not related

Answer: Option (b)

26. In a sinusoidal wave, average current is always _____ rms current.

- (a) Greater than
- (b) Less than
- (c) Equal to
- (d) Not related

Department of Electrical Engineering -09

- 31. Peak value divided by the rms value gives us
 - (a) Peak factor
 - (b) Crest factor
 - (c) Both peak and crest factor
 - (d) Neither peak nor crest factor

Answer:

Option (c)

- **32.** Peak value divided by the rms value gives us
 - (a) Peak factor
 - (b) Crest factor
 - (c) Both peak and crest factor
 - (d) Neither peak nor crest factor

Answer: Option (c)

33. The time axis of an ac phasor represents?

- (a) Time
- (b) Phase angle
- (c) Voltage
- (d) Current

Answer:

Option (b)

- 34. The time axis of an ac phasor represents?
 - (a) Time
 - (b) Phase angle
 - (c) Voltage
 - (d) Current

Answer: Option (b)

- **35.** The time axis of an ac phasor represents?
 - (a) Time

- (b) Phase angle
- (c) Voltage
- (d) Current

Answer: Option (b)

- **36.** The time axis of an ac phasor represents?
 - (a) Time
 - (b) Phase angle
 - (c) Voltage
 - (d) Current

Answer: Option (b)

- **37.** The length of the phasor represents?
 - (a) Magnitude of the quantity
 - (b) Direction of the quantity
 - (c) Neither magnitude nor direction
 - (d) Either magnitude or direction

Answer: Option (a)

- **38.** The length of the phasor represents?
 - (a) Magnitude of the quantity
 - (b) Direction of the quantity
 - (c) Neither magnitude nor direction
 - (d) Either magnitude or direction

Answer:

- **39.** The length of the phasor represents?
 - (a) Magnitude of the quantity
 - (b) Direction of the quantity
 - (c) Neither magnitude nor direction
 - (d) Either magnitude or direction

Answer: Option (a)

- **40.** The length of the phasor represents?
 - (a) Magnitude of the quantity
 - (b) Direction of the quantity
 - (c) Neither magnitude nor direction
 - (d) Either magnitude or direction

Answer: Option (a)

- **41.** The rms value is ______ times the maximum value.
 - (a) 1.414
 - (b) 0.5
 - (c) 2

(d) 0.707

Answer:

Option (d)

- **42.** The rms value is ______ times the maximum value.
 - (a) 1.414
 - (b) 0.5
 - (c) 2
 - (d) 0.707

Answer:

Option (**d**)

- **43.** The rms value is <u>times the maximum value</u>.
 - (a) 1.414
 - (b) 0.5
 - (c) 2
 - (d) 0.707

Answer: Option (**d**)

- **44.** The rms value is ______ times the maximum value.
 - (a) 1.414
 - (b) 0.5
 - (c) 2
 - (d) 0.707

Answer: Option (**d**)

- **45.** Usually phasor diagrams are drawn representing?
 - (a) RMS value
 - (b) Peak value
 - (c) Average value
 - (d) Instantaneous value

Answer: Option (a)

46. Usually phasor diagrams are drawn representing?

- (a) RMS value
- (b) Peak value
- (c) Average value
- (d) Instantaneous value

Answer:

Option (a)

- **47.** Usually phasor diagrams are drawn representing?
 - (a) RMS value
 - (b) Peak value
 - (c) Average value
 - (d) Instantaneous value

Answer:

- **48.** Usually phasor diagrams are drawn representing?
 - (a) RMS value

- (b) Peak value
- (c) Average value
- (d) Instantaneous value

Answer: Option (a)

- 49. The resultant of two alternating sinusoidal voltages or currents can be found using
 - (a) Triangular law
 - (b) Parallelogram law
 - (c) Either triangular or parallelogram law
 - (d) Neither triangular nor parallelogram law

Answer:

Option (b)

- 50. The resultant of two alternating sinusoidal voltages or currents can be found using
 - (a) Triangular law
 - (b) Parallelogram law
 - (c) Either triangular or parallelogram law
 - (d) Neither triangular nor parallelogram law

Answer: Option (b)

- 51. The resultant of two alternating sinusoidal voltages or currents can be found using
 - (a) Triangular law
 - (b) Parallelogram law
 - (c) Either triangular or parallelogram law
 - (d) Neither triangular nor parallelogram law

Answer:

Option (b)

- 52. The resultant of two alternating sinusoidal voltages or currents can be found using
 - (a) Triangular law
 - (b) Parallelogram law
 - (c) Either triangular or parallelogram law
 - (d) Neither triangular nor parallelogram law

Answer: Option (b)

- **53.** The power for a purely resistive circuit is zero, when?
 - (a) Current is zero
 - (b) Voltage is zero
 - (c) Both current and voltage are zero
 - (d) Either current or voltage is zero

Answer: Option (**d**)

- 54. The power for a purely resistive circuit is zero, when?
 - (a) Current is zero
 - (b) Voltage is zero
 - (c) Both current and voltage are zero
 - (d) Either current or voltage is zero

Answer:

Option (**d**)

- 55. The power for a purely resistive circuit is zero, when?
 - (a) Current is zero
 - (b) Voltage is zero
 - (c) Both current and voltage are zero
 - (d) Either current or voltage is zero

Answer:

Option (d)

- **56.** The power for a purely resistive circuit is zero, when?
 - (a) Current is zero
 - (b) Voltage is zero
 - (c) Both current and voltage are zero
 - (d) Either current or voltage is zero

Answer: Option (**d**)

- 57. Inductor does not allow sudden changes in?
 - (a) Voltage
 - (b) Current
 - (c) Resistance
 - (d) Inductance

Answer:

Option (b)

- 58. Inductor does not allow sudden changes in?
 - (a) Voltage
 - (b) Current
 - (c) Resistance
 - (d) Inductance

Answer: Option (b)

- **59.** Inductor does not allow sudden changes in?
 - (a) Voltage
 - (b) Current
 - (c) Resistance
 - (d) Inductance

Answer:

- Option (**b**)
- 60. Inductor does not allow sudden changes in?
 - (a) Voltage
 - (b) Current
 - (c) Resistance
 - (d) Inductance

Answer:

Option (b)

- 61. Inductance is ______ to number of turns in the coil.
 - (a) Directly proportional

- (b) Inversely proportional
- (c) Equal
- (d) Not related

Answer: Option (a)

- 62. Inductance is ______ to number of turns in the coil.
 - (a) Directly proportional
 - (b) Inversely proportional
 - (c) Equal
 - (d) Not related

Answer:

Option (a)

- 63. Inductance is ______ to number of turns in the coil.
 - (a) Directly proportional
 - (b) Inversely proportional
 - (c) Equal
 - (d) Not related

Answer: Option (a)

- 64. Inductance is ______ to number of turns in the coil.
 - (a) Directly proportional
 - (b) Inversely proportional
 - (c) Equal
 - (d) Not related

Answer:

Option (a)

65. In an inductive circuit, the current _____ the voltage?

- (a) Leads
- (b) Lags
- (c) Is greater than
- (d) Is less than

Department of Electrical Engineering -09

- 70. For an RL circuit, the phase angle is always
 - (a) Positive
 - (b) Negative
 - (c) 0
 - (d) 90

Answer: Option (b)

- 71. For an RL circuit, the phase angle is always
 - (a) Positive
 - (b) Negative
 - (c) 0
 - (d) 90

Answer: Option (b)

- 72. For an RL circuit, the phase angle is always
 - (a) Positive
 - (b) Negative
 - (c) 0
 - (d) 90

Answer: Option (b)

- **73.** What is the resonance condition?
 - (a) When XL > XC
 - (b) When XL
 - (c) When XL = XC
 - (d) When XC = infinity

Answer:

Option (c)

- 74. What is the resonance condition?
 - (a) When XL > XC

- (b) When XL
- (c) When XL = XC
- (d) When XC = infinity

Answer: Option (c)

- **75.** What is the resonance condition?
 - (a) When XL > XC
 - (b) When XL
 - (c) When XL = XC
 - (d) When XC = infinity

Answer: Option (c)

- **76.** What is the resonance condition?
 - (a) When XL > XC
 - (b) When XL
 - (c) When XL = XC
 - (d) When XC = infinity

Answer: Option (c)

- 77. What is the relation between reactance, resistance and impedance?
 - (a) Z = R + jX(b) Z = R + X(c) Z = R - X(d) Z = R - jX

Answer: Option (a)

- 78. What is the relation between reactance, resistance and impedance?
 - (a) Z = R + jX(b) Z = R + X
 - (c) Z = R X
 - (d) Z = R jX

Answer:

Option (a)

- 79. What is the relation between reactance, resistance and impedance?
 - (a) Z = R + jX
 - (b) Z = R + X
 - (c) Z = R X
 - (d) Z = R jX

Answer: Option (a)

80. What is the relation between reactance, resistance and impedance?

(a) Z = R + jX(b) Z = R + X(c) Z = R - X(d) Z = R - jX

Answer:

Option (a)

- 81. In an RLC circuit, which of the following is always used as a vector reference?
 - (a) Voltage
 - (b) Resistance
 - (c) Impedance
 - (d) Current

Answer:

Option (a)

- 82. In an RLC circuit, which of the following is always used as a vector reference?
 - (a) Voltage
 - (b) Resistance
 - (c) Impedance
 - (d) Current

Answer: Option (a)

- 83. In an RLC circuit, which of the following is always used as a vector reference?
 - (a) Voltage
 - (b) Resistance
 - (c) Impedance
 - (d) Current

Answer: Option (a)

- 84. In an RLC circuit, which of the following is always used as a vector reference?
 - (a) Voltage
 - (b) Resistance
 - (c) Impedance
 - (d) Current

Answer: Option (a)

- **85.** Which of the following is not ac waveform?
 - (a) Sinusoidal
 - (b) Square
 - (c) Constant
 - (d) Triangular

Answer:

Option (c)

- **86.** Which of the following is not ac waveform?
 - (a) Sinusoidal
 - (b) Square
 - (c) Constant
 - (d) Triangular

Answer: Option (c)

- 87. Which of the following is not ac waveform?
 - (a) Sinusoidal

nature.

- (b) Square
- (c) Constant
- (d) Triangular

Answer: Option (c)

- **88.** Which of the following is not ac waveform?
 - (a) Sinusoidal
 - (b) Square
 - (c) Constant
 - (d) Triangular

Answer: Option (c)

89. The energy stored in the capacitor is of

- (a) Electrostatic
- (b) Magnetic
- (c) Neither electrostatic nor magnetic
- (d) Either electrostatic or magnetic

Answer: Option (**a**)

- **90.** The energy stored in the capacitor is of _____ nature.
 - (a) Electrostatic
 - (b) Magnetic
 - (c) Neither electrostatic nor magnetic
 - (d) Either electrostatic or magnetic

Answer:

- **91.** The energy stored in the capacitor is of _____ nature.
 - (a) Electrostatic
 - (b) Magnetic
 - (c) Neither electrostatic nor magnetic
 - (d) Either electrostatic or magnetic

Answer: Option (a)

- **92.** The energy stored in the capacitor is of _____ nature.
 - (a) Electrostatic
 - (b) Magnetic
 - (c) Neither electrostatic nor magnetic
 - (d) Either electrostatic or magnetic

Answer: Option (a)

- **93.** The energy stored in the inductor is of _____ nature.
 - (a) Electrostatic
 - (b) Magnetic
 - (c) Neither electrostatic nor magnetic
 - (d) Either electrostatic or magnetic

Answer:

Option (b)

- 94. The energy stored in the inductor is of _____ nature.
 - (a) Electrostatic
 - (b) Magnetic
 - (c) Neither electrostatic nor magnetic
 - (d) Either electrostatic or magnetic

Answer:

Option (b)

- **95.** The energy stored in the inductor is of _____ nature.
 - (a) Electrostatic
 - (b) Magnetic
 - (c) Neither electrostatic nor magnetic
 - (d) Either electrostatic or magnetic

Answer: Option (b)

Department of Electrical Engineering -09

- **96.** The energy stored in the inductor is of _____ nature.
 - (a) Electrostatic
 - (b) Magnetic
 - (c) Neither electrostatic nor magnetic
 - (d) Either electrostatic or magnetic

Answer:

Option (b)

- 97. What is the strength of magnetic field known as
 - (a) Flux
 - (b) Density
 - (c) Magnetic strength
 - (d) Magnetic Flux Density

Answer: Option (**d**)

98. What is the strength of magnetic field known as

- (a) Flux
- (b) Density
- (c) Magnetic strength
- (d) Magnetic Flux Density

Answer:

Option (**d**)

- 99. What is the strength of magnetic field known as _____
 - (a) Flux
 - (b) Density
 - (c) Magnetic strength
 - (d) Magnetic Flux Density

Answer: Option (**d**)

100. What is the strength of magnetic field known as _____

(a) Flux

Dr. Subhash Technical Campus- The Jewel of Junagadh

- (b) Density
- (c) Magnetic strength
- (d) Magnetic Flux Density

Answer: Option (**d**)

- **101.** E.M.F. means _____
 - (a) Electromotive Force
 - (b) Electromagnetic Force
 - (c) Electromagnetic Flux
 - (d) Electromotive Flux

Answer: Option (a)

- **102.** E.M.F. means _
 - (a) Electromotive Force
 - (b) Electromagnetic Force
 - (c) Electromagnetic Flux
 - (d) Electromotive Flux

Answer: Option (a)

- 103. E.M.F. means
 - (a) Electromotive Force
 - (b) Electromagnetic Force
 - (c) Electromagnetic Flux
 - (d) Electromotive Flux

Answer:

- **104.** E.M.F. means _____
 - (a) Electromotive Force
 - (b) Electromagnetic Force
 - (c) Electromagnetic Flux
 - (d) Electromotive Flux

Answer:

Option (a)

- **105.** An EMF can be induced by _____
 - (a) Change in the magnetic field only
 - (b) Change in the area of cross section only
 - (c) Change in angle between magnetic field and area only
 - (d) Change in the magnetic field, area or angle between them

Answer: Option (**d**)

- 106. An EMF can be induced by
 - (a) Change in the magnetic field only
 - (b) Change in the area of cross section only
 - (c) Change in angle between magnetic field and area only
 - (d) Change in the magnetic field, area or angle between them

Answer:

Option (d)

- **107.** An EMF can be induced by
 - (a) Change in the magnetic field only
 - (b) Change in the area of cross section only
 - (c) Change in angle between magnetic field and area only
 - (d) Change in the magnetic field, area or angle between them

Answer:

Option (d)

- **108.** An EMF can be induced by _____
 - (a) Change in the magnetic field only
 - (b) Change in the area of cross section only
 - (c) Change in angle between magnetic field and area only
 - (d) Change in the magnetic field, area or angle between them

Answer: Option (d)

- **109.** The period of a wave is _____
 - (a) the same as frequency
 - (b) time required to complete one cycle
 - (c) expressed in amperes
 - (d) none of the above

Answer:

- Option (**b**)
- **110.** The period of a wave is
 - (a) the same as frequency
 - (b) time required to complete one cycle
 - (c) expressed in amperes
 - (d) none of the above

Answer: Option (**b**)

- **111.** The period of a wave is
 - (a) the same as frequency
 - (b) time required to complete one cycle
 - (c) expressed in amperes
 - (d) none of the above

Answer:

Option (b)

- **112.** The period of a wave is _
 - (a) the same as frequency
 - (b) time required to complete one cycle
 - (c) expressed in amperes
 - (d) none of the above

Answer:

Option (b)

113. The period of a sine wave is 0.02 seconds, its frequency is _____

(a) 20 Hz

- (b) 30 Hz
- (c) 40 Hz
- (d) 50 Hz

Answer: Option (**d**)

- **114.** The period of a sine wave is 0.02 seconds, its frequency is _____
 - (a) 20 Hz
 - (b) 30 Hz
 - (c) 40 Hz
 - (d) 50 Hz

Answer: Option (**d**)

115. The period of a sine wave is 0.02 seconds, its frequency is

(a) 20 Hz
(b) 30 Hz
(c) 40 Hz
(d) 50 Hz

Option (d)

- 116. The period of a sine wave is 0.02 seconds, its frequency is
 - (a) 20 Hz
 - (b) 30 Hz
 - (c) 40 Hz
 - (d) 50 Hz

Answer:

Option (**d**)

- 117. A heater is rated as 230 V, 10 kW, A.C. The value 230 V refers to _____
 - (a) Average value
 - (b) RMS value
 - (c) Peak value
 - (d) None of the above

Dr. Subhash Technical Campus- The Jewel of Junagadh

Answer:

Option (b)

- 118. A heater is rated as 230 V, 10 kW, A.C. The value 230 V refers to _____
 - (a) Average value
 - (b) RMS value
 - (c) Peak value
 - (d) None of the above

Answer: Option (b)

- 119. A heater is rated as 230 V, 10 kW, A.C. The value 230 V refers to _
 - (a) Average value
 - (b) RMS value
 - (c) Peak value
 - (d) None of the above

Answer:

Option (b)

- 120. A heater is rated as 230 V, 10 kW, A.C. The value 230 V refers to
 - (a) Average value
 - (b) RMS value
 - (c) Peak value
 - (d) None of the above

Answer: Option (b)

Department of Electrical Engineering -09

Chapter 3. Transformers

1.	The primary and secondary of a transformer are	coupled but	_ connected.
	(a) magnetically, not electrically		
	(b) electrically, not magnetically		
	(c) magnetically, also magnetically		
	(d) electrically, also electrically		
	Answer: Option (a)		
2.	The primary and secondary of a transformer are(a) magnetically, not electrically	coupled but	_ connected.
	(b) electrically, not magnetically		
	(c) magnetically, also magnetically		
	(d) electrically, also electrically		
	Answer:		
2	The primery and secondary of a transformer are	coupled but	connected
5.	(a) magnetically, not electrically		_ connected.
	(b) electrically, not magnetically		
	(c) magnetically, also magnetically		
	(d) electrically, also electrically		
	Answer:		
_	Option (a)		
4.	The primary and secondary of a transformer are	coupled but	_ connected.
	(a) magnetically, not magnetically		
	(c) magnetically also magnetically		
	(d) electrically, also electrically		
	(d) electrically, also electrically		
	Answer: Option (a)		
5.	Core type transformers have, LV and HV windings	are arranged such that	
	(a) Half LV near the core and half HV outside LV	on each limb	
	(b) LV one one limb and HV on the other		
	(c) Half LV outside the core and half HV inside LV	/ on each limb	

Dr. Subhash Technical Campus- The Jewel of Junagadh *

(d) LV and HV windings are sandwiched

Answer: Option (a)

- 6. Core type transformers have, LV and HV windings are arranged such that
 - (a) Half LV near the core and half HV outside LV on each limb
 - (b) LV one one limb and HV on the other
 - (c) Half LV outside the core and half HV inside LV on each limb
 - (d) LV and HV windings are sandwiched

Answer:

Option (a)

- 7. Core type transformers have, LV and HV windings are arranged such that
 - (a) Half LV near the core and half HV outside LV on each limb
 - (b) LV one one limb and HV on the other
 - (c) Half LV outside the core and half HV inside LV on each limb
 - (d) LV and HV windings are sandwiched

Answer:

Option (a)

- 8. Core type transformers have, LV and HV windings are arranged such that
 - (a) Half LV near the core and half HV outside LV on each limb
 - (b) LV one one limb and HV on the other
 - (c) Half LV outside the core and half HV inside LV on each limb
 - (d) LV and HV windings are sandwiched

Answer: Option (a)

9. In an oil filled transformer, the application of oil is for

(a) cooling

- (b) insulation
- (c) both cooling and insulation
- (d) preventing the accumulation of dust

Answer: Option (c)

- **10.** In an oil filled transformer, the application of oil is for
 - (a) cooling

- (b) insulation
- (c) both cooling and insulation
- (d) preventing the accumulation of dust

Answer: Option (c)

- 11. In an oil filled transformer, the application of oil is for
 - (a) cooling
 - (b) insulation
 - (c) both cooling and insulation
 - (d) preventing the accumulation of dust

Answer:

Option (c)

- 12. In an oil filled transformer, the application of oil is for
 - (a) cooling
 - (b) insulation
 - (c) both cooling and insulation
 - (d) preventing the accumulation of dust

Answer:

Option (c)

- **13.** We laminate transformer core to reduce
 - (a) eddy current loss
 - (b) hysteresis loss
 - (c) both eddy current and hysteresis loss
 - (d) ohmic loss

Answer: Option (a)

- 14. We laminate transformer core to reduce
 - (a) eddy current loss
 - (b) hysteresis loss
 - (c) both eddy current and hysteresis loss
 - (d) ohmic loss

Answer: Option (a)

Department of Electrical Engineering -09

- **15.** We laminate transformer core to reduce
 - (a) eddy current loss
 - (b) hysteresis loss
 - (c) both eddy current and hysteresis loss
 - (d) ohmic loss

Answer:

Option (a)

- 16. We laminate transformer core to reduce
 - (a) eddy current loss
 - (b) hysteresis loss
 - (c) both eddy current and hysteresis loss
 - (d) ohmic loss

Answer:

Option (a)

- 17. If a transformer is fed from a 220V and dc supply rather than a 1-phase ac supply, then the transformer(a) burn its windings
 - (a) burn its windings
 - (b) operate normal
 - (c) will not operate
 - (d) will give very small leakage flux

Answer:

Option (a)

- 18. If a transformer is fed from a 220V and dc supply rather than a 1-phase ac supply, then the transformer
 - (a) burn its windings
 - (b) operate normal
 - (c) will not operate
 - (d) will give very small leakage flux

Answer:

- **19.** If a transformer is fed from a 220V and dc supply rather than a 1-phase ac supply, then the transformer (a) burn its windings
 - (b) operate normal
 - (c) will not operate
 - (d) will give very small leakage flux

Answer:

Option (a)

- **20.** If a transformer is fed from a 220V and dc supply rather than a 1-phase ac supply, then the transformer (a) burn its windings
 - (b) operate normal
 - (c) will not operate
 - (d) will give very small leakage flux

Answer: Option (a)

- 21. The flux involved in the emf equation of a transformer has
 - (a) rms value
 - (b) average value
 - (c) total value
 - (d) maximum value

Answer: Option (**d**)

- 22. The flux involved in the emf equation of a transformer has
 - (a) rms value
 - (b) average value
 - (c) total value
 - (d) maximum value

Answer:

Option (d)

- 23. The flux involved in the emf equation of a transformer has
 - (a) rms value
 - (b) average value
 - (c) total value
 - (d) maximum value

Answer:

Option (d)

- 24. The flux involved in the emf equation of a transformer has
 - (a) rms value
 - (b) average value
 - (c) total value

(d) maximum value

Answer: Option (**d**)

- 25. Power required during the open circuit and short circuit test is
 - (a) losses incurring in the transformer
 - (b) executing the power requirements by measuring instruments
 - (c) power for the core losses only
 - (d) all of the mentioned

Answer:

Option (a)

- 26. Power required during the open circuit and short circuit test is
 - (a) losses incurring in the transformer
 - (b) executing the power requirements by measuring instruments
 - (c) power for the core losses only
 - (d) all of the mentioned

Answer:

Option (a)

- 27. Power required during the open circuit and short circuit test is
 - (a) losses incurring in the transformer
 - (b) executing the power requirements by measuring instruments
 - (c) power for the core losses only
 - (d) all of the mentioned

Answer: Option (a)

- 28. Power required during the open circuit and short circuit test is
 - (a) losses incurring in the transformer
 - (b) executing the power requirements by measuring instruments
 - (c) power for the core losses only
 - (d) all of the mentioned

Answer:

- **29.** Which of the below mentioned losses occur in a transformer?
 - (a) Hysteresis losses ;Eddy current losses; Dielectric losses; Stray load losses

Department of Electrical Engineering -09

- (b) Hysteresis losses ;Eddy current losses;
- (c) Dielectric losses; Stray load losses
- (d) Hysteresis losses ;Eddy current losses; Stray load losses

Answer: Option (a)

- **30.** Which of the below mentioned losses occur in a transformer?
 - (a) Hysteresis losses ;Eddy current losses; Dielectric losses; Stray load losses
 - (b) Hysteresis losses ;Eddy current losses;
 - (c) Dielectric losses; Stray load losses
 - (d) Hysteresis losses ;Eddy current losses; Stray load losses

Answer:

Option (a)

- 31. Which of the below mentioned losses occur in a transformer?
 - (a) Hysteresis losses ;Eddy current losses; Dielectric losses; Stray load losses
 - (b) Hysteresis losses ;Eddy current losses;
 - (c) Dielectric losses; Stray load losses
 - (d) Hysteresis losses ;Eddy current losses; Stray load losses

Answer:

Option (a)

- 32. Which of the below mentioned losses occur in a transformer?
 - (a) Hysteresis losses ;Eddy current losses; Dielectric losses; Stray load losses
 - (b) Hysteresis losses ;Eddy current losses;
 - (c) Dielectric losses; Stray load losses
 - (d) Hysteresis losses ;Eddy current losses; Stray load losses

Answer:

Option (a)

- **33.** It is possible to attain maximum efficiency in a transformer when the
 - (a) core losses are equal to rated full load copper losses
 - (b) core losses are more than rated full load copper losses
 - (c) core losses and full load copper losses are constant
 - (d) copper loss also becomes constant

Answer: Option (a)

- **34.** It is possible to attain maximum efficiency in a transformer when the
 - (a) core losses are equal to rated full load copper losses
 - (b) core losses are more than rated full load copper losses
 - (c) core losses and full load copper losses are constant
 - (d) copper loss also becomes constant

Answer:

Option (a)

- 35. It is possible to attain maximum efficiency in a transformer when the
 - (a) core losses are equal to rated full load copper losses
 - (b) core losses are more than rated full load copper losses
 - (c) core losses and full load copper losses are constant
 - (d) copper loss also becomes constant

Answer:

Option (a)

- 36. It is possible to attain maximum efficiency in a transformer when the
 - (a) core losses are equal to rated full load copper losses
 - (b) core losses are more than rated full load copper losses
 - (c) core losses and full load copper losses are constant
 - (d) copper loss also becomes constant

Answer:

Option (a)

- 37. It is advised to coat the laminations of the core with some enamel, to ensure
 - (a) insulation
 - (b) adhesion of laminations
 - (c) reduction in humming sound
 - (d) all of the mentioned

Answer:

- **38.** It is advised to coat the laminations of the core with some enamel, to ensure
 - (a) insulation
 - (b) adhesion of laminations
 - (c) reduction in humming sound
 - (d) all of the mentioned

Answer:

Option (a)

- **39.** It is advised to coat the laminations of the core with some enamel, to ensure
 - (a) insulation
 - (b) adhesion of laminations
 - (c) reduction in humming sound
 - (d) all of the mentioned

Answer: Option (a)

- 40. It is advised to coat the laminations of the core with some enamel, to ensure
 - (a) insulation
 - (b) adhesion of laminations
 - (c) reduction in humming sound
 - (d) all of the mentioned

Answer: Option (a)

Chapter 4. Electrical Machines

- 1. Which of the following statements is/are correct regarding the generation of EMF in rotating electrical
 - (a) by rotating armature windings through a magnetic field
 - (b) by rotating magnetic field with respect to the armature windings
 - (c) by designing the magnetic circuit to have variable reluctance with rotor rotation
 - (d) any of the mentioned

Answer:

Option (d)

- 2. Which of the following statements is/are correct regarding the generation of EMF in rotating electrical
 - (a) by rotating armature windings through a magnetic field
 - (b) by rotating magnetic field with respect to the armature windings
 - (c) by designing the magnetic circuit to have variable reluctance with rotor rotation
 - (d) any of the mentioned

Answer: Option (**d**)

- 3. Which of the following statements is/are correct regarding the generation of EMF in rotating electrical (a) by rotating armature windings through a magnetic field
 - (b) by rotating magnetic field with respect to the armature windings
 - (c) by designing the magnetic circuit to have variable reluctance with rotor rotation
 - (d) any of the mentioned

Answer: Option (d)

- 4. Which of the following statements is/are correct regarding the generation of EMF in rotating electrical
 - (a) by rotating armature windings through a magnetic field
 - (b) by rotating magnetic field with respect to the armature windings
 - (c) by designing the magnetic circuit to have variable reluctance with rotor rotation
 - (d) any of the mentioned

Answer: Option (d)

- 5. A polyphase induction motor of the slip ring or wound rotor type can be used _____
 - (a) for high start-up torque applications
 - (b) as a frequency converter
 - (c) any of the mentioned

Dr. Subhash Technical Campus- The Jewel of Junagadh

(d) none of the mentioned

Answer: Option (c)

- 6. A polyphase induction motor of the slip ring or wound rotor type can be used _____
 - (a) for high start-up torque applications
 - (b) as a frequency converter
 - (c) any of the mentioned
 - (d) none of the mentioned

Answer:

Option (c)

- 7. A polyphase induction motor of the slip ring or wound rotor type can be used
 - (a) for high start-up torque applications
 - (b) as a frequency converter
 - (c) any of the mentioned
 - (d) none of the mentioned

Answer:

Option (c)

- 8. A polyphase induction motor of the slip ring or wound rotor type can be used _
 - (a) for high start-up torque applications
 - (b) as a frequency converter
 - (c) any of the mentioned
 - (d) none of the mentioned

Answer: Option (c)

- 9. In an alternator, frequency per revolution is equal to
 - (a) number of poles
 - (b) twice the number of poles
 - (c) speed in rps
 - (d) number of pole-pairs

Answer: Option (d)

- 10. In an alternator, frequency per revolution is equal to
 - (a) number of poles

Department of Electrical Engineering -09

- (b) twice the number of poles
- (c) speed in rps
- (d) number of pole-pairs

Answer: Option (**d**)

- 11. In an alternator, frequency per revolution is equal to
 - (a) number of poles
 - (b) twice the number of poles
 - (c) speed in rps
 - (d) number of pole-pairs

Answer:

Option (d)

- 12. In an alternator, frequency per revolution is equal to
 - (a) number of poles
 - (b) twice the number of poles
 - (c) speed in rps
 - (d) number of pole-pairs

Answer:

Option (**d**)

- 13. An induction motor can be said analogous to
 - (a) transformer
 - (b) synchronous motor
 - (c) universal motor
 - (d) stepper motor

Answer:

Option (a)

- 14. An induction motor can be said analogous to
 - (a) transformer
 - (b) synchronous motor
 - (c) universal motor
 - (d) stepper motor

Answer: Option (a)

Department of Electrical Engineering -09

- 15. An induction motor can be said analogous to
 - (a) transformer
 - (b) synchronous motor
 - (c) universal motor
 - (d) stepper motor

Answer:

Option (a)

- 16. An induction motor can be said analogous to
 - (a) transformer
 - (b) synchronous motor
 - (c) universal motor
 - (d) stepper motor

Answer:

Option (a)

- 17. Mechanically air gaps in induction motor are kept very low to avoid
 - (a) lower power factor
 - (b) lagging nature
 - (c) magnetizing current
 - (d) all of the mentioned

Answer:

Option (d)

- 18. Mechanically air gaps in induction motor are kept very low to avoid
 - (a) lower power factor
 - (b) lagging nature
 - (c) magnetizing current
 - (d) all of the mentioned

Answer:

- 19. Mechanically air gaps in induction motor are kept very low to avoid
 - (a) lower power factor
 - (b) lagging nature
 - (c) magnetizing current
 - (d) all of the mentioned

Answer:

Option (d)

- 20. Mechanically air gaps in induction motor are kept very low to avoid
 - (a) lower power factor
 - (b) lagging nature
 - (c) magnetizing current
 - (d) all of the mentioned

Answer: Option (**d**)

- **21.** The rotor of a three phase induction motor can never attain synchronous speed.
 - (a) True
 - (b) False

Answer: Option (a)

22. The rotor of a three phase induction motor can never attain synchronous speed.(a) True

(b) False

Answer: Option (a)

- 23. The rotor of a three phase induction motor can never attain synchronous speed.(a) True
 - (b) False

Answer: Option (a)

- 24. The rotor of a three phase induction motor can never attain synchronous speed.
 - (a) True
 - (b) False

Answer: Option (a)

- 25. In an induction motor, the stator is also known as _____ and the rotor as _____(a) field winding, armature winding
 - (b) armature winding, field winding
 - (c) armature winding, compensating winding
 - (d) armature winding, interpole winding

Department of Electrical Engineering -09

Answer: Option (a)

and the rotor as

- (b) armature winding, field winding
- (c) armature winding, compensating winding
- (d) armature winding, interpole winding

Answer:

Option (a)

27. In an induction motor, the stator is also known as

- (a) field winding, armature winding
- (b) armature winding, field winding
- (c) armature winding, compensating winding
- (d) armature winding, interpole winding

Answer: Option (a)

28. In an induction motor, the stator is also known as ______ and the rotor as

- (a) field winding, armature winding
- (b) armature winding, field winding
- (c) armature winding, compensating winding
- (d) armature winding, interpole winding

Answer:

Option (a)

- **29.** The losses that occur in induction motor are
 - (a) stator copper loss
 - (b) rotor iron loss
 - (c) rotor copper loss
 - (d) all of the mentioned

Answer:

- **30.** The losses that occur in induction motor are
 - (a) stator copper loss
 - (b) rotor iron loss

- (c) rotor copper loss
- (d) all of the mentioned

Answer: Option (**d**)

- 31. The losses that occur in induction motor are
 - (a) stator copper loss
 - (b) rotor iron loss
 - (c) rotor copper loss
 - (d) all of the mentioned

Answer:

Option (d)

- 32. The losses that occur in induction motor are
 - (a) stator copper loss
 - (b) rotor iron loss
 - (c) rotor copper loss
 - (d) all of the mentioned

Answer:

Option (**d**)

- **33.** Induction motor can be fed from
 - (a) either rotor or stator
 - (b) stator
 - (c) rotor
 - (d) neither stator nor rotor

Answer:

Option (a)

- **34.** Induction motor can be fed from
 - (a) either rotor or stator

(b) stator

- (c) rotor
- (d) neither stator nor rotor

Answer: Option (a)

35. Induction motor can be fed from

- (a) either rotor or stator
- (b) stator
- (c) rotor
- (d) neither stator nor rotor

Answer:

Option (a)

- **36.** Induction motor can be fed from
 - (a) either rotor or stator
 - (b) stator
 - (c) rotor
 - (d) neither stator nor rotor

Answer: Option (a)

- 37. Electromagnetic torque developed by the motor is _____ compared to shaft torque.(a) less
 - (b) same
 - (c) depends on motor design
 - (d) more

Answer:

Option (d)

38. Electromagnetic torque developed by the motor is _____ compared to shaft torque.

- (a) less
- (b) same
- (c) depends on motor design
- (d) more

Answer:

Option (d)

39. Electromagnetic torque developed by the motor is _____ compared to shaft torque.

- (a) less
- (b) same
- (c) depends on motor design
- (d) more

Answer:

Department of Electrical Engineering -09

- **40.** Electromagnetic torque developed by the motor is _____ compared to shaft torque.
 - (a) less
 - (b) same
 - (c) depends on motor design
 - (d) more

Department of Electrical Engineering -09

Chapter 5. Electrical Installations

- **1.** The main function of a fuse is to
 - (a) protect the line
 - (b) open the circuit
 - (c) protect the appliance
 - (d) prevent excessive currents

Answer: Option (**d**)

- 2. The main function of a fuse is to
 - (a) protect the line
 - (b) open the circuit
 - (c) protect the appliance
 - (d) prevent excessive currents

Answer: Option (**d**)

- 3. The main function of a fuse is to (a) protect the line
 - (b) open the circuit
 - (c) protect the appliance
 - (d) prevent excessive currents

Answer: Option (**d**)

- 4. The main function of a fuse is to
 - (a) protect the line
 - (b) open the circuit
 - (c) protect the appliance
 - (d) prevent excessive currents

Answer: Option (**d**)

- 5. A fuse is connected
 - (a) in series with circuit
 - (b) in parallel with circuit
 - (c) either in series or in parallel with circuit
 - (d) none of the above

Answer: Option (a)

- **6.** A fuse is connected
 - (a) in series with circuit
 - (b) in parallel with circuit
 - (c) either in series or in parallel with circuit
 - (d) none of the above

Answer:

Option (a)

- 7. A fuse is connected
 - (a) in series with circuit
 - (b) in parallel with circuit
 - (c) either in series or in parallel with circuit
 - (d) none of the above

Answer:

8.

- Option (a)
- A fuse is connected
 - (a) in series with circuit
 - (b) in parallel with circuit
 - (c) either in series or in parallel with circuit
 - (d) none of the above

Answer:

Option (a)

- 9. H.R.C. fuse, as compared to a rewirable fuse, has
 - (a) no ageing effect
 - (b) high speed of operation
 - (c) high rupturing capacity
 - (d) all of the above

Answer:

Department of Electrical Engineering -09

- 10. H.R.C. fuse, as compared to a rewirable fuse, has
 - (a) no ageing effect
 - (b) high speed of operation
 - (c) high rupturing capacity
 - (d) all of the above

Answer:

Option (**d**)

- **11.** H.R.C. fuse, as compared to a rewirable fuse, has
 - (a) no ageing effect
 - (b) high speed of operation
 - (c) high rupturing capacity
 - (d) all of the above

Answer:

Option (d)

- 12. H.R.C. fuse, as compared to a rewirable fuse, has
 - (a) no ageing effect
 - (b) high speed of operation
 - (c) high rupturing capacity
 - (d) all of the above

Answer: Option (**d**)

- **13.** The fuse rating is expressed in terms of
 - (a) current
 - (b) voltage
 - (c) VAR
 - (d) kVA

Answer: Option (a)

- 14. The fuse rating is expressed in terms of
 - (a) current
 - (b) voltage
 - (c) VAR
 - (d) kVA

Answer: Option (a)

- **15.** The fuse rating is expressed in terms of
 - (a) current
 - (b) voltage
 - (c) VAR
 - (d) kVA

Answer: Option (a)

- 16. The fuse rating is expressed in terms of
 - (a) current
 - (b) voltage
 - (c) VAR
 - (d) kVA

Answer: Option (a)

- **17.** The fuse blows off by
 - (a) burning
 - (b) arcing
 - (c) melting
 - (d) none of the above

Answer: Option (c)

- **18.** The fuse blows off by
 - (a) burning
 - (b) arcing
 - (c) melting
 - (d) none of the above

Answer: Option (c)

- **19.** The fuse blows off by
 - (a) burning
 - (b) arcing
 - (c) melting
 - (d) none of the above

Answer:

- Option (c)
- **20.** The fuse blows off by
 - (a) burning
 - (b) arcing
 - (c) melting
 - (d) none of the above

Answer: Option (c)

- 21. On which of the following effects of electric current a fuse operates?
 - (a) Photoelectric effect
 - (b) Electrostatic effecct
 - (c) Heating effect
 - (d) Magnetic effect

Answer: Option (c)

22. On which of the following effects of electric current a fuse operates?

- (a) Photoelectric effect
- (b) Electrostatic effecct
- (c) Heating effect
- (d) Magnetic effect

Answer:

Option (c)

- 23. On which of the following effects of electric current a fuse operates?
 - (a) Photoelectric effect
 - (b) Electrostatic effecct
 - (c) Heating effect
 - (d) Magnetic effect

Answer:

Option (c)

- 24. On which of the following effects of electric current a fuse operates?
 - (a) Photoelectric effect
 - (b) Electrostatic effecct
 - (c) Heating effect

(d) Magnetic effect

Answer: Option (c)

- **25.** A fuse in a motor circiut provides protection against
 - (a) overload
 - (b) short-circuit and overload
 - (c) open-circuit, short-circuit and overload
 - (d) none of the above

Answer:

Option (b)

- 26. A fuse in a motor circiut provides protecction against
 - (a) overload
 - (b) short-circuit and overload
 - (c) open-circuit, short-circuit and overload
 - (d) none of the above

Answer:

Option (b)

- 27. A fuse in a motor circiut provides protecction against
 - (a) overload
 - (b) short-circuit and overload
 - (c) open-circuit, short-circuit and overload
 - (d) none of the above

Answer: Option (b)

- **28.** A fuse in a motor circiut provides protecction against
 - (a) overload
 - (b) short-circuit and overload
 - (c) open-circuit, short-circuit and overload
 - (d) none of the above

Answer:

Option (b)

29. Protection by fuses is generally not used beyond(a) 20 A

- (b) 50 A
- (c) 100 A
- (d) 200 A

Answer: Option (c)

- **30.** Protection by fuses is generally not used beyond
 - (a) 20 A
 - (b) 50 A
 - (c) 100 A
 - (d) 200 A

Answer: Option (c)

31. Protection by fuses is generally not used beyond

- (a) 20 A
- (b) 50 A
- (c) 100 A
- (d) 200 A

Answer: Option (c)

32. Protection by fuses is generally not used beyond

- (a) 20 A
- (b) 50 A
- (c) 100 A
- (d) 200 A

Answer: Option (c)

- **33.** A short circuit is identified by
 - (a) no current flow
 - (b) heavy current flow
 - (c) voltage drop
 - (d) voltage rise

Answer:

Department of Electrical Engineering -09

34.

Option (c)

- A short circuit is identified by
 - (a) no current flow
 - (b) heavy current flow
 - (c) voltage drop
 - (d) voltage rise

Answer:

Option (c)

- **35.** A short circuit is identified by
 - (a) no current flow
 - (b) heavy current flow
 - (c) voltage drop
 - (d) voltage rise

Answer:

Option (c)

36. A short circuit is identified by

- (a) no current flow
- (b) heavy current flow
- (c) voltage drop
- (d) voltage rise

Answer: Option (c)

37. A switchgear is device used for

- (a) interrupting an electrical circuit
- (b) switching an electrical circuit
- (c) switching and controlling an electrical circuit
- (d) switching, controlling and protecting the electrical circuit an equipment

Answer: Option (**d**)

- **38.** A switchgear is device used for
 - (a) interrupting an electrical circuit
 - (b) switching an electrical circuit
 - (c) switching and controlling an electrical circuit
 - (d) switching, controlling and protecting the electrical circuit an equipment

Answer: Option (**d**)

- **39.** A switchgear is device used for
 - (a) interrupting an electrical circuit
 - (b) switching an electrical circuit
 - (c) switching and controlling an electrical circuit
 - (d) switching, controlling and protecting the electrical circuit an equipment

Answer:

Option (d)

- 40. A switchgear is device used for
 - (a) interrupting an electrical circuit
 - (b) switching an electrical circuit
 - (c) switching and controlling an electrical circuit
 - (d) switching, controlling and protecting the electrical circuit an equipment

Answer: Option (**d**)

- 41. The material used for fuse must have
 - (a) low melting point and high specific resistance
 - (b) low melting point and low specific resistance
 - (c) high melting point and low specific resistance
 - (d) low melting point and any specific resistance

Answer:

Option (a)

- **42.** The material used for fuse must have
 - (a) low melting point and high specific resistance
 - (b) low melting point and low specific resistance
 - (c) high melting point and low specific resistance
 - (d) low melting point and any specific resistance

Answer:

Option (a)

- **43.** The material used for fuse must have
 - (a) low melting point and high specific resistance
 - (b) low melting point and low specific resistance

- (c) high melting point and low specific resistance
- (d) low melting point and any specific resistance

Answer: Option (a)

- **44.** The material used for fuse must have
 - (a) low melting point and high specific resistance
 - (b) low melting point and low specific resistance
 - (c) high melting point and low specific resistance
 - (d) low melting point and any specific resistance

Answer:

Option (a)

- **45.** The full form of MCB is
 - (a) Main Circuit Breaker
 - (b) Miniature Circuit Breaker
 - (c) Major Circuit Breaker
 - (d) Mask Circuit Breaker

Answer: **Option (b)**

- **46.** The full form of MCB is
 - (a) Main Circuit Breaker
 - (b) Miniature Circuit Breaker
 - (c) Major Circuit Breaker
 - (d) Mask Circuit Breaker

Answer:

Option (b)

- **47.** The full form of MCB is
 - (a) Main Circuit Breaker
 - (b) Miniature Circuit Breaker
 - (c) Major Circuit Breaker
 - (d) Mask Circuit Breaker

Answer:

Option (b)

48. The full form of MCB is

Department of Electrical Engineering -09

- (a) Main Circuit Breaker
- (b) Miniature Circuit Breaker
- (c) Major Circuit Breaker
- (d) Mask Circuit Breaker

Answer: Option (b)

- **49.** The full form of MCCB is
 - (a) Main Current Circuit Breaker
 - (b) Major Current Circuit Breaker
 - (c) Moulded Case Circuit Breaker
 - (d) Main Case Circuit Breaker

Answer: Option (c)

- **50.** The full form of MCCB is
 - (a) Main Current Circuit Breaker
 - (b) Major Current Circuit Breaker
 - (c) Moulded Case Circuit Breaker
 - (d) Main Case Circuit Breaker

Answer: Option (c)

- **51.** The full form of MCCB is
 - (a) Main Current Circuit Breaker
 - (b) Major Current Circuit Breaker
 - (c) Moulded Case Circuit Breaker
 - (d) Main Case Circuit Breaker

Answer:

Option (c)

- **52.** The full form of MCCB is
 - (a) Main Current Circuit Breaker
 - (b) Major Current Circuit Breaker
 - (c) Moulded Case Circuit Breaker
 - (d) Main Case Circuit Breaker

Answer:

53.

Faculty of Degree Engineering - 083

Department of Electrical Engineering -09

Option (c)

- The full form of ELCB is
 - (a) Earth Line Circuit Breaker
 - (b) Earth Line Current Breaker
 - (c) Earth Leakage Current Breaker
 - (d) Earth Leakage Circuit Breaker

Answer:

Option (d)

- **54.** The full form of ELCB is
 - (a) Earth Line Circuit Breaker
 - (b) Earth Line Current Breaker
 - (c) Earth Leakage Current Breaker
 - (d) Earth Leakage Circuit Breaker

Answer:

Option (**d**)

- **55.** The full form of ELCB is
 - (a) Earth Line Circuit Breaker
 - (b) Earth Line Current Breaker
 - (c) Earth Leakage Current Breaker
 - (d) Earth Leakage Circuit Breaker

Answer: Option (**d**)

- **56.** The full form of ELCB is
 - (a) Earth Line Circuit Breaker
 - (b) Earth Line Current Breaker
 - (c) Earth Leakage Current Breaker
 - (d) Earth Leakage Circuit Breaker

Answer: Option (**d**)

- **57.** The rated current of MCB is
 - (a) Less than 10 A
 - (b) Less than 100 A
 - (c) More than 100 A
 - (d) More than 200 A

Answer: Option (b)

- **58.** The rated current of MCB is
 - (a) Less than 10 A
 - (b) Less than 100 A
 - (c) More than 100 A
 - (d) More than 200 A

Answer: Option (b)

- **59.** The rated current of MCB is
 - (a) Less than 10 A
 - (b) Less than 100 A
 - (c) More than 100 A
 - (d) More than 200 A

Answer: Option (**b**)

- 60. The rated current of MCB is(a) Less than 10 A(b) Less than 100 A
 - (c) More than 100 A
 - (d) More than 200 A

Answer:

Option (b)

- **61.** The MCCB is used in the range of
 - (a) 10 A to 100 A
 - (b) 100 A to 600 A
 - (c) 600 A to 1000 A
 - (d) 1000 A to 10000 A

Answer:

Option (b)

- **62.** The MCCB is used in the range of
 - (a) 10 A to 100 A
 - (b) 100 A to 600 A

- (c) 600 A to 1000 A
- (d) 1000 A to 10000 A

Answer: Option (b)

- **63.** The MCCB is used in the range of
 - (a) 10 A to 100 A
 - (b) 100 A to 600 A
 - (c) 600 A to 1000 A
 - (d) 1000 A to 10000 A

Answer:

Option (b)

- 64. The MCCB is used in the range of
 - (a) 10 A to 100 A
 - (b) 100 A to 600 A
 - (c) 600 A to 1000 A
 - (d) 1000 A to 10000 A

Answer:

- Option (b)
- 65. The MCCB provides the protection against overload through
 - (a) Thermal
 - (b) Electrical
 - (c) Magnetic
 - (d) Mechnaical

Answer:

Option (a)

66. The MCCB provides the protection against overload through ______ mechanism.

mechanism.

- (a) Thermal
- (b) Electrical
- (c) Magnetic
- (d) Mechnaical

Answer:

Option (a)

67. The MCCB provides the protection against overload through ______ mechanism.

mechanism.

- (a) Thermal
- (b) Electrical
- (c) Magnetic
- (d) Mechnaical

Answer:

Option (a)

- 68. The MCCB provides the protection against overload through
 - (a) Thermal
 - (b) Electrical
 - (c) Magnetic
 - (d) Mechnaical

Answer: Option (a)

- 69. Which protective device will not operate due to over-current?
 - (a) Fuse
 - (b) MCB
 - (c) ELCB
 - (d) MCCB

Answer: Option (c)

- 70. Which protective device will not operate due to over-current?
 - (a) Fuse
 - (b) MCB
 - (c) ELCB
 - (d) MCCB

Answer:

Option (c)

- 71. Which protective device will not operate due to over-current?
 - (a) Fuse
 - (b) MCB
 - (c) ELCB
 - (d) MCCB

Answer:

Option (c)

- 72. Which protective device will not operate due to over-current?
 - (a) Fuse
 - (b) MCB
 - (c) ELCB
 - (d) MCCB

Answer:

- Option (c)
- 73. Which protective device will not operate due to over-current?
 - (a) Fuse
 - (b) MCB
 - (c) ELCB
 - (d) MCCB

Answer:

Option (c)

- 74. Which protective device will not operate due to over-current?
 - (a) Fuse
 - (b) MCB
 - (c) ELCB
 - (d) MCCB

Answer: Option (c)

- 75. Which protective device will not operate due to over-current?
 - (a) Fuse
 - (b) MCB
 - (c) ELCB
 - (d) MCCB

Answer: Option (c)

- 76. Which protective device will not operate due to over-current?
 - (a) Fuse
 - (b) MCB
 - (c) ELCB
 - (d) MCCB

- 77. The insulating material for a cable should have
 - (a) low cost
 - (b) high dielectric strength
 - (c) high mechanical strength
 - (d) all of above

Answer:

Option (d)

- **78.** The insulating material for a cable should have
 - (a) low cost
 - (b) high dielectric strength
 - (c) high mechanical strength
 - (d) all of above

Answer: Option (**d**)

- **79.** The insulating material for a cable should have
 - (a) low cost
 - (b) high dielectric strength
 - (c) high mechanical strength
 - (d) all of above

Answer:

Option (d)

- **80.** The insulating material for a cable should have
 - (a) low cost
 - (b) high dielectric strength
 - (c) high mechanical strength
 - (d) all of above

Answer:

- 81. Which of the following protects cable against mechanical injury?
 - (a) bedding
 - (b) sheath

- (c) Armouring
- (d) none of above

Answer: Option (c)

Jption (c)

- 82. Which of the following protects cable against mechanical injury?
 - (a) bedding
 - (b) sheath
 - (c) Armouring
 - (d) none of above

Answer:

Option (c)

- 83. Which of the following protects cable against mechanical injury?
 - (a) bedding
 - (b) sheath
 - (c) Armouring
 - (d) none of above

Answer:

Option (c)

- 84. Which of the following protects cable against mechanical injury?
 - (a) bedding
 - (b) sheath
 - (c) Armouring
 - (d) none of above

Answer:

Option (c)

- **85.** Which of the following insulation is used in cables?
 - (a) Varnished cambric
 - (b) Rubber
 - (c) Paper
 - (d) Any of above

Answer: Option (**d**)

86. Which of the following insulation is used in cables?

Department of Electrical Engineering -09

- (a) Varnished cambric
- (b) Rubber
- (c) Paper
- (d) Any of above

Answer:

Option (**d**)

- **87.** Which of the following insulation is used in cables?
 - (a) Varnished cambric
 - (b) Rubber
 - (c) Paper
 - (d) Any of above

Answer: Option (**d**)

88. Which of the following insulation is used in cables?

- (a) Varnished cambric
- (b) Rubber
- (c) Paper
- (d) Any of above

Answer:

Option (d)

- 89. The thickness of the layer of insulation on the conductor in cables, depends upon
 - (a) reactive power
 - (b) power factor
 - (c) voltage
 - (d) current carrying capacity

Answer:

Option (c)

- 90. The thickness of the layer of insulation on the conductor in cables, depends upon
 - (a) reactive power
 - (b) power factor
 - (c) voltage
 - (d) current carrying capacity

Answer:

Option (c)